Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Evaluating 21st Century Climate Change for Bolivia: A Comprehensive Dynamical Downscaling Strategy Using the WRF Regional Climate Model

Azar M Abadi, University of Nebraska - Lincoln


Bolivia is a low-latitude, developing country at grave risk for the effects of human-induced climate changes. This means evaluating the consequences of projected future climate changes is of significant importance. Unfortunately, the complex topography and high elevation of much of the country pose particular challenges, as these effects cannot be suitably resolved at the approximately 100 km spatial resolution of current global climate models (GCM). Therefore, a comprehensive suite of high-resolution climate change simulations was made focused on Bolivia are run using three different GCMs with three different emission scenarios for each to drive the WRF regional climate model. Beyond the results specific to Bolivia, this study is a demonstration of a robust yet viable approach to providing high-resolution, practical, and useable climate change information for any region regardless of global location. GCM performances in Bolivia show three CMIP5 GCMs of MPI-ESM-LR, MIROC5 and CCSM4 are among the models that can successfully regenerate the large-scale atmospheric circulation over South America and more specifically over Bolivia. Initializing the WRF model by the above mentioned GCMs and the NCEP/NCAR reanalysis data then provides us with finer resolution climatic data at 36, 12 and 4 km that are later used for the climate change assessment over Bolivia. The results for the WRF model evaluation confirm the added value of the regional climate model in capturing the effects of topography and local features, on simulating more realistic weather and climate especially on the mountainous regions. Finally, the outcomes of the climate change assessment confirm that the climate mean and extreme patterns are changing in Bolivia as the precipitation is predicted to increase over the Amazon, particularly in the flood-prone region to the west, and decrease in the drier Altiplano. The temperature is predicted to increase across the country with more pronounced warming on the higher elevations where water availability is already a challenge. As one of the costliest hazards in the country, drought patterns are projected to change in the lowlands by having shorter lengths with greater severity while in the highlands conditions are worsening where drought events are predicted to last longer with enhanced severity.

Subject Area

Climate Change|Meteorology

Recommended Citation

Abadi, Azar M, "Evaluating 21st Century Climate Change for Bolivia: A Comprehensive Dynamical Downscaling Strategy Using the WRF Regional Climate Model" (2018). ETD collection for University of Nebraska-Lincoln. AAI10928200.