Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

The Derived Category of a Locally Complete Intersection Ring

Joshua Pollitz, University of Nebraska - Lincoln

Abstract

Let R be a commutative noetherian ring. A well-known theorem in commutative algebra states that R is regular if and only if every complex with finitely generated homology is a perfect complex. This homological and derived category characterization of a regular ring yields important ring theoretic information; for example, this characterization solved the well-known ``localization problem" for regular local rings. The main result of this thesis is establishing an analogous characterization for when R is locally a complete intersection. Namely, R is locally a complete intersection if and only if each nontrivial complex with finitely generated homology can build a nontrivial perfect complex in the derived category using finitely many cones and retracts. This answers a question of Dwyer, Greenlees and Iyengar posed in 2006 and yields a completely triangulated category characterization of locally complete intersection rings. Moreover, this work gives a new proof that a complete intersection localizes.

Subject Area

Mathematics

Recommended Citation

Pollitz, Joshua, "The Derived Category of a Locally Complete Intersection Ring" (2019). ETD collection for University of Nebraska - Lincoln. AAI22587026.
https://digitalcommons.unl.edu/dissertations/AAI22587026

Share

COinS