Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Magnetoresistive phenomena in nanoscale magnetic systems

John D Burton, University of Nebraska - Lincoln


Nanomagnetic materials are playing an increasingly important role in modern technologies. A particular area of interest involves the interplay between magnetism and electric transport, i.e. magnetoresistive properties. Future generations of field sensors and memory elements will have to be on a length scale of a few nanometers or smaller. Magnetoresistive properties of such nanoscale objects exhibit novel features due to reduced dimensionality, complex surfaces and interfaces, and quantum effects. In this dissertation theoretical aspects of three such nanoscale magnetoresistive phenomena are discussed. Very narrow magnetic domain walls can strongly scatter electrons leading to an increased resistance. Specifically, this dissertation will cover the newly predicted effect of magnetic moment softening in magnetic nanocontacts or nanowires. Atomically thin domain walls in Ni exhibit a reduction, or softening, of the local magnetic moments due to the noncollinearity of the magnetization. This effect leads to a strong enhancement of the resistance of a domain wall. Magnetic tunnel junctions (MTJs) consist of two ferromagnetic electrodes separated by a thin layer of insulating material through which current can be carried by electron tunneling. The resistance of an MTJ depends on the relative orientation of the magnetization of the two ferromagnetic layers, an effect known as tunneling magnetoresistance (TMR). A first-principles analysis of CoFeB:MgO:CoFeB MTJs will be presented. Calculations reveal that it is energetically favorable for interstitial boron atoms to reside at the interface between the electrode and MgO tunneling barrier, which can be detrimental to the TMR effect. Anisotropic magnetoresistance (AMR) is the change in resistance of a ferromagnetic system as the orientation of the magnetization is altered. In this dissertation, the focus will be on AMR in the tunneling regime. Specifically we will present new theoretical results on tunneling AMR (TAMR) in two systems: (i) planar MTJs with CoFe electrodes and (ii) fully broken magnetic break junctions. In both cases electronic resonances in the electrodes lead to complex angular and bias dependence of the TAMR. The theoretical studies demonstrate the basic physical phenomenon behind recent experimental data.

Subject Area


Recommended Citation

Burton, John D, "Magnetoresistive phenomena in nanoscale magnetic systems" (2008). ETD collection for University of Nebraska - Lincoln. AAI3297588.