Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

The Pseudomonas syringae type III secretion system: The translocator proteins, their secretion, and the restriction of translocation by the plant immune system

Emerson Crabill, University of Nebraska - Lincoln


Pseudomonas syringae is a Gram-negative plant pathogen whose virulence is dependent upon its type III secretion system (T3SS), a nanosyringe that facilitates translocation, or injection, of type III effector (T3E) proteins into eukaryotic cells. The primary function of P. syringae T3E proteins is suppression of plant immunity. Bacterial proteins called translocators form a translocon that forms a pore in the host plasma membrane which is traversed by T3Es. HrpK1, a putative P. syringae translocator, is a type III-secreted protein important for virulence and T3E injection, but not secretion of T3Es. Harpins are a group of proteins specific to plant pathogens that are also important for T3E translocation. P. syringae pv. tomato DC3000 has 4 harpins – HrpZ1, HrpW1, HopAK1, and HopP1. Here, HrpK1 is confirmed to be a translocator. HrpK1 had a greater impact on T3E translocation than the harpins. HrpK1 and HrpZ1 disrupted liposomes. Both proteins interacted with phosphatidic acid which interfered with T3E translocation. HrpJ, a type III-secreted protein required for HrpZ1 secretion, was also required for secretion of HrpK1, HrpW1, and HopAK1. A hrpJ mutant secreted elevated levels of the Hrp pilus protein HrpA1. HrpJ appears to control transition from Hrp pilus secretion to translocator secretion. Secretion was complemented by secretion incompetent HrpJ derivatives indicating that HrpJ controls secretion from inside the bacteria. The hrpJ mutant expressing secretion incompetent HrpJ was reduced in virulence but was complemented by HrpJ expressed inside plant cells. Additionally, transgenic Arabidopsis plants expressing HrpJ were reduced in their immune responses indicating that HrpJ can suppress plant immunity. Plants pretreated with an inducer of pathogen-associated molecular pattern-triggered immunity are unable to produce an HR. Plants, as an immune response, have evolved the ability to block T3E translocation when plant immunity has been induced prior to bacterial inoculation. This is especially true in non-host interactions whereas virulent bacteria appear to be able to attenuate injection restriction in host plants via T3E activity.

Subject Area

Microbiology|Plant Pathology

Recommended Citation

Crabill, Emerson, "The Pseudomonas syringae type III secretion system: The translocator proteins, their secretion, and the restriction of translocation by the plant immune system" (2012). ETD collection for University of Nebraska - Lincoln. AAI3521927.