Electrical & Computer Engineering, Department of


Date of this Version



SCIENTIFIC REPORTS | 7: 17333 | DOI:10.1038/s41598-017-16374-6.


Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.


We demonstrated an abnormal double-peak (annular shaped) energy deposition through dualwavelength synthesis of the fundamental frequency (ω) and the second-harmonic frequency (2ω) of a femtosecond (fs) Ti:sapphire laser. The annular shaped distribution of the dual-wavelength fs laser was confirmed through real beam shape detection. This uniquely simple and flexible technique enables the formation of functional plasmonic nanostructures. We applied this double-peak fs-laser-induced dewetting effect to the controlled fabrication and precise deposition of Au nanostructures, by using a simple, lithography-free, and single-step process. In this process, the double-peak energy-shaped fs laser pulse induces surface patterning of a thin film followed by nanoscale hydrodynamic instability, which is highly controllable under specific irradiation conditions. Nanostructure morphology (shape, size, and distribution) modulation can be achieved by adjusting the laser irradiation parameters, and the subsequent ion-beam polishing enables further dimensional reduction and removal of the surrounding film. The unique optical properties of the resulting nanostructure are highly sensitive to the shape and size of the nanostructure. In contrast to a nanoparticle, the resonance-scattering spectrum of an Au nanobump exhibites two resonance peaks. These suggest that the dual-wavelength fs laserbased dewetting of thin films can be an effective means for the scalable manufacturing of patterned functional nanostructures.