Electrical & Computer Engineering, Department of


Date of this Version



Volume 2014, Article ID 532634, 11 pages


© 2014 Christos Argyropoulos et al.

Open access



We present here tunable and reconfigurable designs of linear and nonlinear plasmonic and hyperbolic metamaterials. Rich scattering features of multilayered composite nanoparticles are demonstrated, which include complex and exotic scattering signatures combining multiple dipolar Fano resonances and electromagnetic induced transparency (EIT) features. These dipoledipole multi-Fano scattering responses can be further tuned through altering the plasmonic properties of the concentric layers or the permittivity of the core, for instance, by the presence of nonlinearities. Strong third-order nonlinear effects, such as optical bistability, may also be induced in the scattering response of nonlinear nanoparticles due to the highly enhanced and confined fields inside their core. Nonlinear hyperbolicmetamaterial designs are also explored, which can realize tunable positive-to-negative refraction at the same frequency, as a function of the input intensity. Negative Goos-H¨anchen shift is demonstrated based only on the hyperbolic dispersion properties of these layered metamaterials without the usual need of negative index metamaterials. The Goos-H¨anchen shift may be tuned from positive-to-negative values, when the structure is illuminated with different frequencies. A plethora of applications are envisioned based on the proposed tunable metamaterials, such as ultrafast reconfigurable imaging devices, tunable sensors, novel nanotag designs, and efficient all-optical switches and memories.