Electrical & Computer Engineering, Department of


Date of this Version



Published in J. Appl. Phys. 82 (6), 15 September 1997. © 1997 American Institute of Physics. Used by permission.


Spectroscopic ellipsometry over the spectral range from 700 to 3000 cm-1 and from 1.5 to 3.5 eV is used to simultaneously determine phase and microstructure of polycrystalline hexagonal and cubic boron nitride thin films deposited by magnetron sputtering on (100) silicon. The results are obtained from a single microstructure-dependent model for both infrared and visible-light thin-film anisotropic dielectric functions. The optical behavior of high c-BN content thin films is described by an effective medium approximation. We obtain the amount of h-BN within high c-BN content thin films. A thin oriented nucleation layer between the silicon substrate and the high c-BN content layer is demonstrated. The preferential arrangement of the grain c axes within the h-BN thin films are found to be dependent on the growth parameters. The results from the infrared and visible spectral range ellipsometry model are compared to each other and found to be highly consistent.