Electrical & Computer Engineering, Department of
Document Type
Article
Date of this Version
2019
Citation
Physical Review B 99, 184302 (2019)
DOI: 10.1103/PhysRevB.99.184302
Abstract
A complete set of infrared-active and Raman-active lattice modes is obtained from density functional theory calculations for single-crystalline centrosymmetric orthorhombic neodymium gallate. The results for infrared-active modes are compared with an analysis of the anisotropic long-wavelength properties using generalized spectroscopic ellipsometry. The frequency-dependent dielectric function tensor and dielectric loss function tensor of orthorhombic neodymium gallium oxide are reported in the spectral range of 80–1200 cm−1. A combined eigendielectric displacement vector summation and dielectric displacement loss vector summation approach augmented by considerations of lattice anharmonicity is utilized to describe the experimentally determined tensor elements. All infrared-active transverse and longitudinal optical mode pairs obtained from density functional theory calculations are identified by our generalized spectroscopic ellipsometry investigation. The results for Raman-active modes are compared to previously published experimental observations. Static and high-frequency dielectric constants from theory as well as experiment are presented and discussed in comparison with values reported previously in the literature.
Comments
Copyright 2019 by the American Physical Society
https://doi.org/10.1103/PhysRevB.99.184302