Electrical & Computer Engineering, Department of


Date of this Version



Journal of Applied Physics 129, 225102 (2021)

DOI: 10.1063/5.0052848


Published under an exclusive license by AIP Publishing.

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 129, 225102 (2021) and may be found at https://doi.org/10.1063/5.0052848


A complete set of all optical phonon modes predicted by symmetry for bixbyite structure indium oxide is reported here from a combination of far-infrared and infrared spectroscopic ellipsometry, as well as first principles calculations. Dielectric function spectra measured on high quality, marginally electrically conductive melt grown single bulk crystals are obtained on a wavelength-by-wavelength (also known as point-by-point) basis and by numerical reduction of a subtle free charge carrier Drude model contribution. A four-parameter semi-quantum model is applied to determine all 16 pairs of infrared-active transverse and longitudinal optical phonon modes, including the high-frequency dielectric constant, ε=4.05±0.05. The Lyddane–Sachs–Teller relation then gives access to the static dielectric constant, εDC=10.55±0.07. All experimental results are in excellent agreement with our density functional theory calculations and with previously reported values, where existent. We also perform optical Hall effect measurements and determine for the unintentionally doped n-type sample a free electron density of n = (2.81±0.01)×1017 cm-3, a mobility of μ=(112±3) cm2/(Vs), and an effective mass parameter of (0.208±0.006)me. Density and mobility parameters compare very well with the results of electrical Hall effect measurements. Our effective mass parameter, which is measured independently of any other experimental technique, represents the bottom curvature of the Γ point in In2O3 in agreement with previous extrapolations. We use terahertz spectroscopic ellipsometry to measure the quasi-static response of In2O3, and our model validates the static dielectric constant obtained from the Lyddane–Sachs–Teller relation.