Entomology, Department of


Date of this Version



Published in J. Econ. Entomol. 100(1): 136Ð147 (2007). Copyright ©2007 Entomological Society of America. Used by permission.


A 2-yr study was conducted to document the influence of selected buffalograss, Buchloe dactyloides (Nuttall) Engelmann, management practices (three mowing heights and five nitrogen levels) on the seasonal abundance of the western chinch bug, Blissus occiduus Barber (Heteroptera: Lygaeidae), and its beneficial arthropods. Vacuum, pitfall, and sticky traps samples were collected every 14 d from the middle of May through October from western chinch bug-resistant (‘Prestige’) and -susceptible (‘378’) buffalograss management plots. In total, 27,374 and 108,908 western chinch bugs were collected in vacuum and pitfall traps, respectively. More than 78% of all western chinch bugs were collected from the highly susceptible buffalograss 378. Significantly more big-eyed bugs (Geocoridae: Geocoris spp.) were collected from the 378 buffalograsss management plots than the Prestige plots. In contrast, buffalograss cultivar had little influence on the abundance of other beneficial arthropods collected. Statistically, western chinch bugs were least abundant at the lowest mowing height (2.5 cm) and increased in abundance with increasing fertility. Numerically, however, differences among management levels on western chinch bug abundance were minimal. Numerous beneficial arthropods were collected from buffalograss management plots, including spiders, predatory ants, ground beetles (Carabidae), rove beetles (Staphylinidae), big-eyed bugs, and several species of hymenopterous parasitoids. In general, beneficial arthropods were essentially unaffected by either mowing height or nitrogen level. Scelionid wasps represented 66.3% of the total parasitoids collected. The total number of scelionid wasps collected among the three mowing heights and five nitrogen levels were approximately equal.

Included in

Entomology Commons