Entomology, Department of

 

Document Type

Article

Date of this Version

April 2006

Comments

Published in J. Econ. Entomol. 99(2): 483-493 (2006). Copyright 2006 Entomological Society of America. Used by permission.

Abstract

We validated a stochastic model of the evolution of resistance to adulticidal sprays of methyl-parathion in western corn rootworm, Diabrotica virgifera virgifera LeConte, populations in Nebraska. The population dynamics predicted by the model resembled that reported for field populations, and time until control failures occurred closely matched reports by commercial crop consultants. We incorporated uncertainty about the values used for 18 model parameters by replacing default values with random draws taken from a normal distribution. One parameter, the initial resistance allele frequency, was no longer measurable because of the evolution of resistance. We therefore proposed five candidate initial allele frequencies and developed probability distributions for the time to resistance for each by running 1000 simulations with parameters randomly varied. These distributions included variation because of stochastic effects as well as parameter uncertainty. We used Bayesian inference to estimate the candidate frequency most likely, given reported times to field control failures. The initial allele frequency of 10-4 was most likely (29%), 10-3 was less likely (28%), whereas 10-6 was relatively unlikely (5%). Results from sensitivity analysis depended upon how evolution of resistance was measured. When resistance was examined as a genetic phenomenon, the rate of increase of the resistance allele depended almost entirely on genetic factors (LC50 values), the characteristics of the pesticide (residual activity), and the variance associated with emergence of adults. When resistance was measured as failure of methyl-parathion to reduce populations below threshold levels (0.5 gravid females per plant), parameters that contributed to population growth rate (mortality and fecundity) were also important. These data suggest two important phases in resistance evolution in corn rootworms: a genetic phase associated with negative growth rates and rapid changes in resistance allele frequencies and a rebound phase associated with positive growth rates and near fixation of the resistance allele.

Included in

Entomology Commons

Share

COinS