Entomology, Department of


Date of this Version



North Central Regional Publication 602, 1997, http://www.extension.umn.edu/agriculture/corn/pest-management/bt-corn-and-european-corn-borer/


Authors and Contributors: J.F. Witkowski, J.L. Wedberg, K.L. Steffey, P.E. Sloderbeck, B.D. Siegfried, M.E. Rice, C.D. Pilcher, D.W. Onstad, C.E. Mason, L.C. Lewis, D.A. Landis, A.J. Keaster, F. Huang, R.A. Higgins, M.J. Haas, M.E. Gray, K.L. Giles, J.E. Foster, P.M. Davis, D.D. Calvin, L.L. Buschman, P.C. Bolin, B.D. Barry, D.A. Andow & D.N. Alstad.

Bt Corn & European Corn Borer

Seed companies are now marketing Bt corn, one of the first tangible fruits of biotechnology that has practical implications for U.S. and Canadian corn farmers. Bt corn hybrids produce an insecticidal protein derived from the bacterium Bacillus thuringiensis, commonly called Bt. These hybrids provide protection against the European corn borer equal to, and usually far greater than, optimally timed insecticides. Rapid introduction of Bt corn hybrids creates uncertainty about the technology and new questions about its use. What is Bt corn? How is it made? How does it work? What is the best way to use it? Is it worth the added cost? This publication provides an overview of Bt corn, an innovative technology for managing European corn borer, and discusses how to use this technology for long-term profitability.

Why manage European corn borer?

European corn borer, Ostrinia nubilalis, is the most damaging insect pest of corn throughout the United States and Canada (Figs. 1 and 2). Losses resulting from European corn borer damage and control costs exceed $1 billion each year. For example, losses during a 1995 outbreak in Minnesota alone exceeded $285 million. A recent four-year study in Iowa indicated average losses near 13 bushels per acre in both first and second generations of European corn borer, for total losses of about 25 bushels per acre.

Included in

Entomology Commons