Entomology, Department of


Date of this Version



Published in Systematic Entomology 45 (2020), pp 874–893.

DOI: 10.1111/syen.12433


Copyright © 2020 The Royal Entomological Society; published by Wiley. Used by permission.


Anchored hybrid enrichment (AHE) has emerged as a powerful tool for uncovering the evolutionary relationships within many taxonomic groups. AHE probe sets have been developed for a variety of insect groups, though none have yet been shown to be capable of simultaneously resolving deep and very shallow (e.g., intraspecific) divergences. In this study, we present NOC1, a new AHE probe set (730 loci) for Lepidoptera specialized for tiger moths and assess its ability to deliver phylogenetic utility at all taxonomic levels. We test the NOC1 probe set with 142 individuals from 116 species sampled from all the major lineages of Arctiinae (Erebidae), one of the most diverse groups of noctuoids (>11 000 species) for which no well-resolved, strongly supported phylogenetic hypothesis exists. Compared to previous methods, we generally recover much higher branch support (BS), resulting in the most well-supported, well-resolved phylogeny of Arctiinae to date. At the most shallow-levels, NOC1 confidently resolves species-level and intraspecific relationships and potentially uncovers cryptic species diversity within the genus Hypoprepia. We also implement a “sensitivity analysis” to explore different loci combinations and site sampling strategies to determine whether a reduced probe set can yield results similar to those of the full probe set. At both deep and shallow levels, only 50–175 of the 730 loci included in the complete NOC1 probe set were necessary to resolve most relationships with high confidence, though only when the more rapidly evolving sites within each locus are included. This demonstrates that AHE probe sets can be tailored to target fewer loci without a significant reduction in BS, allowing future studies to incorporate more taxa at a lower per-sample sequencing cost. NOC1 shows great promise for resolving long-standing taxonomic issues and evolutionary questions within arctiine lineages, one of the most speciose clades within Lepidoptera.