Earth and Atmospheric Sciences, Department of


Date of this Version



1996 Society of Photo-Optical Instrumentation Engineers


Opt. Eng. 35(12) 3442–3448 (December 1996) 0091-3286/96/$6.00


The goal of data compression is to find shorter representa- tions for any given data. In a data storage application, this is done in order to save storage space on an auxiliary device or, in the case of a communication scenario, to increase channel throughput. Because re- motely sensed data require tremendous amounts of transmission and storage space, it is essential to find good algorithms that utilize the spa- tial and spectral characteristics of these data to compress them. A new technique is presented that uses a spectral and spatial correlation to create orderly data for the compression of multispectral remote sensing data, such as those acquired by the Landsat Thematic Mapper (TM) sensor system. The method described simply compresses one of the bands using the standard Joint Photographic Expert Group (JPEG) com- pression, and then orders the next band’s data with respect to the pre- vious sorting permutation. Then, the move-to-front coding technique is used to lower the source entropy before actually encoding the data. Ow- ing to the correlation between visible bands of TM images, it was ob- served that this method yields tremendous gain on these bands (on an average 0.3 to 0.5 bits/pixel compared with lossless JPEG) and can be successfully used for multispectral images where the spectral distances between bands are close.