Earth and Atmospheric Sciences, Department of


Date of this Version



Aerosol and Air Quality Research | Volume 23 | Issue 3 | 220223


Open access.


In response to the COVID-19 pandemic in early 2020, Sri Lanka underwent a nationwide lockdown that limited motor vehicle movement, industrial operations, and human activities. This study analyzes the impact of COVID-19 lockdown on carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM10, PM2.5) concentrations in two urban cities (Colombo and Kandy) in Sri Lanka, by comparison of data from the lockdown period (March to May 2020) with its analogous period of 2019 and 2021. The results showed that the percentage change of daytime PM10, PM2.5, CO, and NO2 concentration during the lockdown in Colombo (Kandy) is –42.3% (–39.5%), –46% (–54.2%), –14.7% (–8.8%) and –82.2% (–80.9%), respectively. In both cities, the response of NO2 to the lockdown was the most sensitive. In contrast, daytime O3 concentration in Colombo (Kandy) has increased by 6.7% (27.2%), suggesting that the increase in O3 concentration was mainly due to a reduction in NOx emissions leading to lower O3 titration by NO. In addition, daytime SO2 concentration in Colombo has increased by 22.9%, while daytime SO2 concentration in Kandy has decreased by –40%. During the lockdown period, human activities were significantly reduced, causing significant reductions in industrial operations and transportation activities, further reducing emissions and improving air quality in two cities. The results of this study offer potential for local authorities to better understand the emission sources, assess the effectiveness of current air pollution control strategies, and form a basis for formulating better environmental policies to improve air quality and human health.