U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska


Date of this Version


Document Type



Translational Animal Science, 2022, 6, 1–8 https://doi.org/10.1093/tas/txac051


Published by Oxford University Press on behalf of the American Society of Animal Science 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.


Two experiments were conducted to evaluate the inclusion rate roughage in wheat-based diets containing modified distillers grains with solubles (MDGS) on feedlot performance (Feedlot Experiment), as well as digestibility, ruminal pH, and ruminal fermentation characteristics (Digestibility Experiment). The feedlot experiment utilized 72 Angus steers (392 ± 46.3 kg initial body weight) which were randomly assigned to 1 of 12 pens, 3 pens per treatment, to evaluate feedlot performance and carcass characteristics. Dietary treatments were 1) control; 10% roughage, 2) 12% roughage, 3) 14% roughage, and 4) 16% roughage. The digestibility experiment used four ruminally and duodenally cannulated steers (393 ± 33.0 kg) in a 4 × 4 Latin Square with either 10%, 12%, 14%, or 16% roughage as in the feedlot experiment. However, dietary roughage source was different between these two experiments and included a combination of grass hay and wheat straw (Feedlot Experiment), and corn silage (Digestibility Experiment). All data were analyzed with the Mixed Procedures of SAS. Feed intake was recorded, with duodenal and fecal output calculated using chromic oxide. Ruminal pH and fermentation were assessed. Growth performance and most carcass characteristics were not affected by increasing roughage (P ≥ 0.11). Marbling tended to decrease linearly (P = 0.10) with increasing roughage inclusion. Increasing dietary roughage content had no effect on organic matter intake (P = 0.60) in the digestibility experiment. Intake, duodenal flow, and digestibility of neutral detergent fiber and acid detergent fiber were not affected by treatment (P ≥ 0.16). Ruminal pH increased linearly (P < 0.01) as rate of roughage inclusion increased. Ruminal concentrations of acetate and butyrate increased, and propionate decreased in a linear fashion (P < 0.01) thereby increasing (P < 0.01) acetate and butyrate to propionate ratio with increasing dietary roughage. Our data indicate that increasing roughage inclusion in wheat-based diets including 30% MDGS increased ruminal pH and shifted ruminal fermentation patterns. Additionally, increasing roughage inclusion did not affect feedlot performance in steers fed wheat at 36% to 42% of dietary dry matter in combination with 30% MDGS.