U.S. Department of Agriculture: Animal and Plant Health Inspection Service


Date of this Version



The Wilson Journal of Ornithology 134(3):546–551, 2022 DOI: 10.1676/22-00001


The findings and conclusions in this publication have not been formally disseminated by the U.S. Department of Agriculture and should not be construed to represent any agency determination or policy. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy.


Studies that rely on noninvasive collection of DNA for birds often use feces or feathers. Some birds, such as vultures, regurgitate undigested matter in the form of pellets that are commonly found under roost sites. Our research demonstrates that regurgitated pellets are a viable, noninvasive source of DNA for molecular ecology studies of vultures. Our objectives were to amplify 5 microsatellite loci designed for distinguishing Turkey Vultures (Cathartes aura) and Black Vultures (Coragyps atratus) in a single, multiplexed PCR, and to determine how long the target nuclear DNA persists after a vulture pellet is regurgitated and exposed to the environment. We collected pellets from captive Black Vultures and placed them in an outdoor aviary for a maximum estimated total of 12, 24, 36, or 48 h. We swabbed pellet surfaces for extraction and amplified vulture DNA using the panel of markers. All amplified alleles fell within predicted ranges of Black Vultures for all 5 loci, supporting the use of this microsatellite panel for vulture species identification. Overall amplification success for samples collected 0–12 h after regurgitation was 82.3%. Pellets collected 12–24 h, 24–36 h, and 36–48 h after regurgitation had only 18%, 10.2%, and 4.5% amplification success, respectively, which may have been due to a rain event. Our approach will be useful for noninvasive genetic sampling targeting nuclear DNA. These results should encourage noninvasive genetic sampling studies of other species that regurgitate pellets, such as raptors, water birds, or shorebirds.