U.S. Department of Agriculture: Animal and Plant Health Inspection Service

 

Date of this Version

February 2007

Comments

Published in JOURNAL OF WILDLIFE MANAGEMENT 71(1):271–276; 2007. Permission to use.

Abstract

The presence of bovine tuberculosis (TB) in cattle can negatively impact a state’s economy and cattle industry. In Michigan, USA, wild white-tailed deer (Odocoileus virginianus) are a reservoir for reinfecting cattle herds. Although direct TB transmission between deer and cattle is rare, infected deer may contaminate cattle feed. To mitigate this risk, we designed and evaluated a deer-resistant cattle feeder (DRCF) device for deterring deer from feeders. The device delivered negative stimuli to condition deer to avoid cattle feeders. We tested the device by conducting a comparative change experiment at a high-density captive white-tailed deer operation in northeastern lower Michigan using pretreatment and treatment periods and random allocation of DRCF protection to 3 of 6 feeders during the treatment period. We used animal-activated cameras to collect data on deer use of feeders. Deer use was similar at protected and unprotected feeders during the pretreatment period but was lower at protected feeders during the treatment period. Deer-resistant cattle feeders were 100% effective during the first 2 treatment weeks, 94% during the first 5 weeks, but effectiveness then dropped to 61% during the final week. Excluding problems associated with low battery power and infrared sensors, DRCFs were 99% effective at deterring deer. Our results suggest that DRCFs can effectively limit deer use of cattle feed, potentially with minimal impact on feeding behavior of cattle, thus reducing potential transmission of bovine TB through contaminated feed. By employing DRCFs in bovine TB endemic areas, especially at times that deer are food stressed, agencies and producers can practically and economically reduce the potential for bovine TB to be transmitted from deer to cattle.

Share

COinS