Libraries at University of Nebraska-Lincoln


Date of this Version

Fall 10-8-2020


Delivering a reliable software product is a fairly complex process, which involves proper coordination from the various teams in planning, execution, and testing for delivering software. Most of the development time and the software budget's cost is getting spent finding and fixing bugs. Rework and side effect costs are mostly not visible in the planned estimates, caused by inherent bugs in the modified code, which impact the software delivery timeline and increase the cost. Artificial intelligence advancements can predict the probable defects with classification based on the software code changes, helping the software development team make rational decisions. Optimizing the software cost and improving the software quality is the topmost priority of the industry to remain profitable in the competitive market. Hence, there is a great urge to improve software delivery quality by minimizing defects and having reasonable control over predicted defects. This paper presents the bibliometric study for "Reliable Software Delivery using Predictive analysis" by selecting 450 documents from the Scopus database, choosing keywords like software defect prediction, machine learning, and artificial intelligence. The study is conducted for a year starting from 2010 to 2021. As per the survey, it is observed that Software defect prediction achieved an excellent focus among the researchers. There are great possibilities to predict and improve overall software product quality using artificial intelligence techniques.