Libraries at University of Nebraska-Lincoln



The false information or misinformation over the web has severe effects on people, business and society as a whole. Therefore, detection of misinformation has become a topic of research among many researchers. Detecting misinformation of textual articles is directly connected to text classification problem. With the massive and dynamic generation of unstructured textual documents over the web, incremental learning in text classification has gained more popularity. This survey explores recent advancements in incremental learning in text classification and review the research publications of the area from Scopus, Web of Science, Google Scholar, and IEEE databases and perform quantitative analysis by using methods such as publication statistics, collaboration degree, research network analysis, and citation analysis. The contribution of this study in incremental learning in text classification provides researchers insights on the latest status of the research through literature survey, and helps the researchers to know the various applications and the techniques used recently in the field.