Libraries at University of Nebraska-Lincoln



The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The primary objective of this bibliometric paper is to understand the scope of literature available related to RUL prediction. Scopus database is used to perform the analysis of 1673 extracted scientific literature from the year 1985 to 2020. Based on available published documents, analysis is done on the year-wise publication data, document types, language-wise distribution of documents, funding sponsors, authors contributions, affiliations, document wise citations, etc. to give an in-depth view of the research trends in the area of RUL prediction. The paper also focuses on the available maintenance methods, predictive maintenance models, RUL models, deep learning algorithms for RUL prediction challenges and future directions in the RUL prediction area.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.