Libraries at University of Nebraska-Lincoln

 

Date of this Version

Winter 1-28-2021

Abstract

The recent years have witnessed an upsurge in the number of published documents. Organizations are showing an increased interest in text classification for effective use of the information. Manual procedures for text classification can be fruitful for a handful of documents, but the same lack in credibility when the number of documents increases besides being laborious and time-consuming. Text mining techniques facilitate assigning text strings to categories rendering the process of classification fast, accurate, and hence reliable. This paper classifies chemistry documents using machine learning and statistical methods. The procedure of text classification has been described in chronological order like data preparation followed by processing, transformation, and application of classification techniques culminating in the validation of the results.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.