Mechanical & Materials Engineering, Department of

 

Date of this Version

2015

Citation

Circulation 132(11):1003-12

Comments

DOI: 10.1161/CIRCULATIONAHA.115.016270

Abstract

Background—Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA).

Methods and Results—D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (pppp<0.005).

Conclusions—These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA.

Share

COinS