Mechanical & Materials Engineering, Department of


Date of this Version



Journal of Biomechanical Engineering, DECEMBER 2012, Vol. 134, Iss. 12, pp. 121005-1 to 121005-6
DOI: 10.1115/1.4023094


Copyright (c) 2012 by ASME. Used by permission.


The stent-artery interactions have been increasingly studied using the finite element method for better understanding of the biomechanical environment changes on the artery and its implications. However, the deployment of balloon-expandable stents was generally simplified without considering the balloon-stent interactions, the initial crimping process of the stent, its overexpansion routinely used in the clinical practice, or its recoil process. In this work, the stenting procedure was mimicked by incorporating all the above-mentioned simplifications. The impact of various simplifications on the stent-induced arterial stresses was systematically investigated. The plastic strain history of stent and its resulted geometrical variations, as well as arterial mechanics were quantified and compared. Results showed the model without considering the stent crimping process underestimating the minimum stent diameter by 17.2%, and overestimating the maximum radial recoil by 144%. It was also suggested that overexpansion resulted in a larger stent diameter, but a greater radial recoil ratio and larger intimal area with high stress were also obtained along with the increase in degree of overexpansion.