Natural Resources, School of


Document Type


Date of this Version



Published in Cartography and Geographic Information Science, Vol. 32, No.4, 2005, pp. 369-380


Insufficient research has been done on integrating artificial-neural-network-based cellular automata (CA) models and constrained CA models, even though both types have been studied for several years. In this paper, a constrained CA model based on an artificial neural network (ANN) was developed to simulate and forecast urban growth. Neural networks can learn from available urban land-use geospatial data and thus deal with redundancy, inaccuracy, and noise during the CA parameter calibration. In the ANN -Urban-CA model we used, a two-layer Back-Propagation (BP) neural network has been integrated into a CA model to seek suitable parameter values that match the historical data. Each cell's probability of urban transformation is determined by the neural network during simulation. A macro-scale socio-economic model was run together with the CA model to estimate demand for urban space in each period in the future. The total number of new urban cells generated by the CA model was constrained, taking such exogenous demands as population forecasts into account. Beijing urban growth between 19S0 and 2000 was simulated using this model, and long-term (2001-2015) growth was forecast based on multiple socio-economic scenarios. The ANN-Urban-CA model was found capable of simulating and forecasting the complex and non-linear spatial-temporal process of urban growth in a reasonably short time, with less subjective uncertainty.