Natural Resources, School of




Date of this Version



Ecology and Evolution. 2018;8:5674–5679.


© 2018 The Authors

Open access

DOI: 10.1002/ece3.4109


Historical and contemporary use of large, economically important rivers by threatened and/or endangered species in the United States is a subject of great interest to a wide range of stakeholders. In a recent study of the Platte River in Nebraska, Farnsworth et al. (2017) (hereinafter referred to as “the authors” or “Farnsworth et al.”) used distributions of nest initiation dates taken mostly from human-created, off-channel habitats and a model of emergent sandbar habitat to evaluate the hypothesis that least terns (Sternula antillarum) and piping plovers (Charadrius melodus) are physiologically adapted to initiate nests concurrent with the cessation of spring river flow rises. The authors conclude that (1) these species are not now, nor were they in the past, physiologically adapted to the hydrology of the Platte River, (2) habitats in the Platte River did not, and cannot support reproductive levels sufficient to maintain species subpopulations, (3) the gap in local elevation between peak river stage and typical sandbar height, in combination with the timing of the average spring flood, creates a physical environment which limits opportunities for successful nesting and precludes persistence by either species, and (4) the presence of off-channel habitats, including human-created sand and gravel mines, natural lakes, and a playa wetland, allowed the species to expand into the Platte River basin.