Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

2022

Citation

Scientific Reports | (2022) 12:10855 | https://doi.org/10.1038/s41598-022-14748-z

Comments

Open access.

Abstract

Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated. In particular, laser-driven sources, where the radiation is generated by transverse oscillations of electrons within the plasma accelerator structure (so-called betatron oscillations) can generate highly-brilliant ultrashort X-ray pulses using a comparably simple setup. Here, we experimentally demonstrate a method to markedly enhance the parameters of LWFA-driven betatron X-ray emission in a proof-of-principle experiment. We show a significant increase in the number of generated photons by specifically manipulating the amplitude of the betatron oscillations by using our novel Transverse Oscillating Bubble Enhanced Betatron Radiation scheme. We realize this through an orchestrated evolution of the temporal laser pulse shape and the accelerating plasma structure. This leads to controlled off-axis injection of electrons that perform large-amplitude collective transverse betatron oscillations, resulting in increased radiation emission. Our concept holds the promise for a method to optimize the X-ray parameters for specific applications, such as time-resolved investigations with spatial and temporal atomic resolution or advanced high-resolution imaging modalities, and the generation of X-ray beams with even higher peak and average brightness.

Included in

Physics Commons

Share

COinS