Department of Physics and Astronomy: Publications and Other Research


Date of this Version



Published (2023) Materials Today Nano, 22, art. no. 100316


Used by permission.


Transition metal nitrides (e.g., TiN) have shown tremendous promise in optical metamaterials for nanophotonic devices due to their plasmonic properties comparable to noble metals and superior high temperature stability. Vertically aligned nanocomposites (VANs) offer a great platform for combining two dissimilar functional materials with a one-step deposition technique toward multifunctionality integration and strong structural/property anisotropy. Here we report a two-phase nanocomposite design combining ferromagnetic CoFe2 nanosheets in the plasmonic TiN matrix as a new hybrid plasmonic metamaterial. The hybrid metamaterials exhibit obvious anisotropic optical and magnetic responses, as well as a pronounced magneto-optical coupling response evidenced by MOKE measurement, owing to the novel vertically aligned structure. This work demonstrates a new TiN-based metamaterial with anisotropic properties and multi-functionality towards optical switchable spintronics, magnetic sensors and integrated optics

Included in

Physics Commons