Department of Physics and Astronomy: Publications and Other Research


Document Type


Date of this Version



J. Appl. Phys. 133, 195301 (2023); doi: 10.1063/5.0152539


Used by permission.


NiCo2O4 (NCO) films grown on MgAl2O4 (001) substrates have been studied using magnetometry and x-ray magnetic circular dichroism based on x-ray absorption spectroscopy and spin-polarized inverse photoemission spectroscopy with various thicknesses down to 1.6 nm. The magnetic behavior can be understood in terms of a layer of optimal NCO and an interfacial layer (1.2 ± 0.1 nm), with a small canting of magnetization at the surface. The thickness dependence of the optimal layer can be described by the finite-scaling theory with a critical exponent consistent with the high perpendicular magnetic anisotropy. The interfacial layer couples antiferromagnetically to the optimal layer, generating exchange-spring styled magnetic hysteresis in the thinnest films. The non-optimal and measurement-speed-dependent magnetic properties of the interfacial layer suggest substantial interfacial diffusion.

Included in

Physics Commons