Department of Physics and Astronomy: Publications and Other Research
Document Type
Article
Date of this Version
2015
Citation
APPLIED PHYSICS LETTERS 106, 242401 (2015)
Abstract
We show how atomic-scale exchange phenomena can be controlled and exploited in nanoscale itinerant magnets to substantially improve magnetic properties. Cluster-deposition experiments, first-principle simulations, and analytical calculations are used to demonstrate the effect in Co2Si nanoclusters, which have average sizes varying from about 0.6 to 29.5 nm. The cluster-deposited nanoparticles exhibit average magnetic moments of up to 0.70 lB/Co at 10K and 0.49 lB/Co at 300K with appreciable magnetocrystalline anisotropies, in sharp contrast to the nearly vanishing bulk magnetization. The underlying spin correlations and associated cluster-size dependence of the magnetization are explained by a surface induced ferromagnetic spin polarization with a decay length of the order of 1 nm, much larger than the nearest-neighbor interatomic distance in the alloy.
Comments
Copyright 2015 Used by permission