Department of Physics and Astronomy: Publications and Other Research
Document Type
Article
Date of this Version
12-1-1985
Abstract
The exact representation of a two-electron wave function near the origin is the Fock expansion, i.e., a double summation over powers of R and of lnR [where R≡(r12+r22)1/2] with coefficients dependent on the five remaining angular variables. Using a representation of hyperspherical harmonics, we present here the first numerical solution of the equations for the Fock coefficients. We present also a general procedure for matching a linear combination of Fock-series solutions onto a basis of adiabatic hyperspherical functions at a matching radius R0. This matching procedure ensures that the proper asymptotic boundary conditions are satisfied. Exploratory numerical results are presented for 1S wave functions of He and H- in which four Fock-series solutions are matched onto the lowest 1S adiabatic hyperspherical wave function at a matching radius near the first antinode in the adiabatic wave function.
Comments
Published by American Physical Society. Phys. Rev. A 32, 3219 (1985). http://pra.aps.org. Copyright © 1985 American Physical Society. Permission to use.