Plant Science Innovation, Center for


Document Type


Date of this Version



2002 Blackwell Science Ltd


Molecular Microbiology (2002) 44(6), 1469–1481


Pseudomonas syringae uses a type III protein secretion system encoded by the Hrp pathogenicity island (Pai) to translocate effector proteins into plant cells. One of these effector proteins is HopPsyA. A small open reading frame (ORF), named shcA, precedes the hopPsyA gene in the Hrp Pai of P. s. syringae 61. The predicted amino acid sequence of shcA shares general characteristics with chaperones used in type III protein secretion systems of animal pathogens. A functionally non-polar deletion of shcA in P. s. syringae 61 resulted in the loss of detectable HopPsyA in supernatant fractions, consistent with ShcA acting as a chaperone for HopPsyA. Cosmid pHIR11 carries a functional set of type III genes from P. s. syringae 61 and confers upon saprophytes the ability to secrete HopPsyA in culture and to elicit a HopPsyA-dependent hypersensitive response (HR) on tobacco. P. fluorescens carrying a pHIR11 derivative lacking shcA failed to secrete HopPsyA in culture, but maintained the ability to secrete another type III-secreted protein, HrpZ. This pHIR11 derivative was also greatly reduced in its ability to elicit an HR, indicating that the ability to translocate HopPsyA into plant cells was compromised. Using affinity chromatography, we showed that ShcA binds directly to HopPsyA and that the ShcA binding site must reside within the first 166 amino acids of HopPsyA. Thus, ShcA represents the first demonstrated chaperone used in a type III secretion system of a bacterial plant pathogen. We searched known P. syringae type III-related genes for neighbouring ORFs that shared the general characteristics of type III chaperones and identified five additional candidate type III chaperones. Therefore, it is likely that chaperones are as prevalent in bacterial plant pathogen type III systems as they are in their animal pathogenic counterparts.