Plant Science Innovation, Center for


Date of this Version



Adams J, Qiu Y, Xu Y, Schnable JC. Plant segmentation by supervised machine learning methods. Plant Phenome J. 2020;3:e20001.


© 2020 The Authors.


High-throughput phenotyping systems provide abundant data for statistical analysis through plant imaging. Before usable data can be obtained, image processing must take place. In this study, we used supervised learning methods to segment plants from the background in such images and compared them with commonly used thresholding methods. Because obtaining accurate training data is a major obstacle to using supervised learning methods for segmentation, a novel approach to producing accurate labels was developed. We demonstrated that, with careful selection of training data through such an approach, supervised learning methods, and neural networks in particular, can outperform thresholding methods at segmentation.