Department of Special Education and Communication Disorders


Document Type


Date of this Version



Ear Hear. 2014 ; 35(4): 440–447


Copyright 2014 by Lippincott Williams & Wilkins

NIH Public Access



Objective—The primary goal of nonlinear frequency compression (NFC) and other frequency lowering strategies is to increase the audibility of high-frequency sounds that are not otherwise audible with conventional hearing-aid processing due to the degree of hearing loss, limited hearing aid bandwidth or a combination of both factors. The aim of the current study was to compare estimates of speech audibility processed by NFC to improvements in speech recognition for a group of children and adults with high-frequency hearing loss.

Design—Monosyllabic word recognition was measured in noise for twenty-four adults and twelve children with mild to severe sensorineural hearing loss. Stimuli were amplified based on each listener’s audiogram with conventional processing (CP) with amplitude compression or with NFC and presented under headphones using a software-based hearing aid simulator. A modification of the speech intelligibility index (SII) was used to estimate audibility of information in frequency-lowered bands. The mean improvement in SII was compared to the mean improvement in speech recognition.

Results—All but two listeners experienced improvements in speech recognition with NFC compared to CP, consistent with the small increase in audibility that was estimated using the modification of the SII. Children and adults had similar improvements in speech recognition with NFC.

Conclusion—Word recognition with NFC was higher than CP for children and adults with mild to severe hearing loss. The average improvement in speech recognition with NFC (7%) was consistent with the modified SII, which indicated that listeners experienced an increase in audibility with NFC compared to CP. Further studies are necessary to determine if changes in audibility with NFC are related to speech recognition with NFC for listeners with greater degrees of hearing loss, with a greater variety of compression settings, and using auditory training.