U.S. Department of Agriculture: Forest Service -- National Agroforestry Center


Date of this Version



International Journal of Wildland Fire 2010, 19, 976–983


Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char) cover is essential before widespread adoption. Through repeated spectral analysis of increasing charcoal quantities on six representative soils, we found that addition of charcoal to each soil resulted in linear spectral mixing. We found that performance of the Normalised Burn Ratio was highly sensitive to soil type, whereas the Normalised Difference Vegetation Index was relatively insensitive. Our conclusions have potential implications for national programs that seek to monitor long-term trends in wildfire severity and underscore the need to collect accurate soils information when evaluating large-scale wildland fires.