U.S. Department of Agriculture: Forest Service -- National Agroforestry Center


Date of this Version



Published in Agroforest Syst (2012) 84:191–205. DOI: 10.1007/s10457-011-9457-5


Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that restrict sheet flow; these berms ultimately back up surface runoff, resulting in an eventual breakthrough that concentrates overland flow. This study examines the occurrence of concentrated flow paths (CFPs) in riparian buffers at both the field and watershed scale. At the field scale, intensive topographic surveys were conducted at ten field sites in southern Illinois. To assess the prevalence of CFPs at the watershed scale, three watersheds in southern Illinois were selected for walking stream surveys along randomly selected 1,000 m reaches. CFPs were identified in all topographic surveys and all walking stream surveys. Among field sites, concentrated flow accounted for 82.5–100% of the drainage leaving the agricultural fields. Sediment berm accumulation was identified at all field sites and was positively correlated with CFP size. At the watershed scale, CFPs were more abundant in agricultural areas compared to forested land. Results from this study indicate that concentrated flow was prevalent across all study sites at both the field and watershed scale. Thus, surface water quality may suffer in areas with poorly functioning buffers, and managers must consider the occurrence of CFPs when designing and maintaining riparian buffers to protect stream water quality.