U.S. Department of Commerce


Date of this Version



Ecology, 85(5), 2004, pp. 1258–1264.


Relative body size has long been recognized as a factor influencing reproductive success in fishes, but maternal age has only recently been considered. We monitored growth and starvation resistance in larvae from 20 female black rockfish (Sebastes melanops), ranging in age from five to 17 years. Larvae from the oldest females in our experiments had growth rates more than three times as fast and survived starvation more than twice as long as larvae from the youngest females. Female age was a far better predictor of larval performance than female size. The apparent underlying mechanism is a greater provisioning of larvae with energy-rich triacylglycerol (TAG) lipids as female age increases. The volume of the oil globule (composed primarily of TAG) present in larvae at parturition increases with maternal age and is correlated with subsequent growth and survival. These results suggest that progeny from older females can survive under a broader range of environmental conditions compared to progeny from younger females. Age truncation commonly induced by fisheries may, therefore, have severe consequences for long-term sustainability of fish populations.