U.S. Department of Veterans Affairs


Date of this Version


Document Type



Computational Statistics and Data Analysis 84 (2015) 85–98


U.S. Government Work


Latent class models with crossed subject-specific and test(rater)-specific random effects have been proposed to estimate the diagnostic accuracy (sensitivity and specificity) of a group of binary tests or binary ratings. However, the computation of these models are hindered by their complicated Monte Carlo Expectation–Maximization (MCEM) algorithm. In this article, a class of pseudo-likelihood functions is developed for conducting statistical inference with crossed random-effects latent class models in diagnostic medicine. Theoretically, the maximum pseudo-likelihood estimation is still consistent and has asymptotic normality. Numerically, our results show that not only the pseudo-likelihood approach significantly reduces the computational time, but it has comparable efficiency relative to the MCEM algorithm. In addition, dimension-wise likelihood, one of the proposed pseudolikelihoods, demonstrates its superior performance in estimating sensitivity and specificity.