Virology, Nebraska Center for

 

ORCID IDs

Luwen Zhang ORCID iD: 0000-0002-1621-8034

Date of this Version

2020

Citation

Journal of Medical Virology 2020

doi:10.1002/jmv.26188

Comments

(c) John Wiley 2020

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.26188.

Abstract

Multiple sclerosis (MS) is the most common autoimmune disorder affecting the central nervous system. Epstein-Barr virus (EBV) is a causative agent for infectious mononucleosis (IM) that is associated with MS pathogenesis. However, the exact mechanism by which EBV, specifically in IM, increases the risk for MS remains unknown. EBV immortalizes primary B lymphocytes in vitro and causes excessive B lymphocyte proliferation in IM in vivo. In asymptomatic carriers, EBV-infected B lymphocytes still proliferate to certain degrees, the process of which is tightly controlled by the host immune systems. Experimental autoimmune encephalomyelitis (EAE) mimics key features of MS in humans and is a well-established rodent model for human MS. We have found that xenografts of EBV-immortalized B lymphocytes, which partially resemble the hyperproliferation of EBV-infected cells in IM, exacerbate autoimmune responses in myelin oligodendrocyte glycoprotein-induced EAE in C57BL/6 mice. After remission, an additional challenge with EBV-immortalized cells induces a relapse in EAE. Moreover, xenografts with EBV-immortalized cells tighten the integrity of blood brain barrier (BBB) in thalamus and hypothalamus areas of the mouse brains. Genomic sequences of prokaryotic 16S rRNA presented in feces reveal that EBV-immortalized cells significantly change the diversities of microbial populations. Our data collectively suggest that EBV-mediated proliferation of B lymphocytes may be a risk factor for the exacerbation of MS, which are associated with gut microbiome changes and BBB modulations. Furthermore, multiple xenografts of EBV-immortalized cells into in C57BL/6 mice could sever as a useful model for human relapsing-remitting MS with predictable severity and timing.

Share

COinS