Water Center, The

 

Date of this Version

1-24-2022

Citation

Journal of Hydrology 608 (2022) 127541. https://doi.org/10.1016/j.jhydrol.2022.127541

Comments

U.S. government works are not subject to copyright.

Abstract

Coupled water and heat transfer models are widely used to analyze soil water content and temperature dynamics, evaluate agricultural management systems, and support crop growth modelling. In relatively dry soils, vapor transfer, rather than liquid water flux, becomes the main pathway for water redistribution. However, in some modularized soil simulators, e.g., 2DSOIL (Timlin et al., 1996), vapor transfer is not included, which may induce errors in soil water and heat modelling. Directly embedding vapor transfer into existing water and heat transfer modules may violate the modularized architecture of those simulators. Therefore, the objectives of this study are to design a vapor transfer model, evaluate its performance, and implement it as a separate module in a coupled soil water and heat simulator, e.g., 2DSOIL. The efficacy of the vapor transfer model is evaluated by comparing the simulated soil water content and temperature before and after including the new vapor transfer model, and the soil water content and temperature simulated with the standard Philip and de Vries (1957) model. By implementing vapor transfer as a separate module in 2DSOIL, modifications to existing water and heat transfer modules can be minimized and the modularized model architecture can be maintained. Numerical examples of 2DSOIL with the new vapor transfer model are presented to illustrate the effects of vapor flux on soil water and temperature redistributions. In conclusion, the new vapor transfer model provides an effective and easy-to-use method to account for the effects of vapor transfer on coupled soil water and heat simulations.

Share

COinS