Wildlife Disease and Zoonotics

 

Authors

Milton Friend

Date of this Version

December 1999

Comments

Published in Field Manual of Wildlife Diseases: General Field Procedures and Diseases of Birds, edited by Milton Friend and J. Christian Franson, USGS-National Wildlife Health Center, 1999 (online 2007; http://www.nwhc.usgs.gov/publications/field_manual/).

Abstract

Many kinds of potentially harmful chemicals are found in environments used by wildlife. Some chemicals, such as pesticides and polychlorinated biphenyls (PCBs), are synthetic compounds that may become environmental contaminants through their use and application. Other materials, such as selenium and salt, are natural components of some environments, but contaminants of others. Natural and synthetic materials may cause direct poisoning and death, but they also may have adverse effects on wildlife that impair certain biological systems, such as the reproductive and immune systems. This section provides information about some of the environmental contaminants and natural chemicals that commonly cause avian mortality; microbial and other biotoxins are addressed in the preceding section.

Direct poisoning and mortality of wildlife caused by exposure to chemical toxins are the focus of this section. However, the indirect effects of chemicals may have significantly greater impacts on wildlife populations than the direct effects. Behavioral changes that affect survival, reproductive success and the survival of young, and that impair the functioning of the immune system are examples of indirect chemical toxicity that are known to occur but that are beyond the scope of this publication. For additional information readers are directed to more comprehensive treatments of environmental toxicology and to publications that focus on specific chemicals and their effects on wildlife.

The diagnosis of chemical poisoning as the cause of wildlife mortality is a challenging task because of the vast array of chemicals that wildlife may be exposed to (Table 1), the variable biological responses following concurrent exposure to multiple chemicals, the absence of tissue residues for some chemical toxins, and the lack of specific pathological changes associated with most chemical toxins in tissues. The diagnostic process can be greatly facilitated by a thorough field observation record, comprehensive background information about the circumstances of a mortality event, and by properly collecting, handling, and preserving samples submitted to the diagnostic laboratory (see Section 1). Sources of assistance for the investigation of wildlife mortality, when toxins are suspected, are listed in Appendix B.

Share

COinS