Department of Animal Science

 

Date of this Version

2002

Comments

Published in Journal of Animal Science 2002. 80:797–804. Copyright © 2002 American Society of Animal Science. Used by permission.

Abstract

Six ruminally and duodenally cannulated yearling steers (523 kg) were used in a replicated 3 × 3 Latin square design experiment to study the effects of corn processing on nutrient digestion, bacterial CP production, and ruminal fermentation. Dietary treatments consisted of 90% concentrate diets that were based on dry-rolled (DRC), high-moisture (HMC), or steam-flaked (SFC) corn. Each diet contained 2.0% urea (DM basis) as the sole source of supplemental nitrogen. Each period lasted 17 d, with d 1 through 14 for diet adaptation and d 15 through 17 for fecal, duodenal, and ruminal sampling. Dry matter and OM intakes were similar for DRC and SFC but were approximately 15% higher (P < 0.05) for HMC. True ruminal OM digestibilities were 18 and 10% greater (P < 0.05) for HMC than for DRC or SFC, respectively. Ruminal starch digestibilities were similar between HMC and SFC and were approximately 19% greater (P < 0.05) than DRC. Postruminal OM digestibility was similar among treatments; however, postruminal starch digestibility was 15% greater (P < 0.05) for SFC than for DRC or HMC, which were similar. Total-tract DM and OM digestibilities were similar between HMC and SFC and were 4% greater (P < 0.05) than DRC. Likewise, total-tract starch digestibilities were similar between HMC and SFC and were 3% greater (P < 0.05) than DRC. Bacterial CP flow to the duodenum was 29% greater (P < 0.05) for HMC than for DRC or SFC, which were similar. Bacterial N efficiencies were similar among treatments. Based on bacterial CP flow from the rumen, we estimate that dietary DIP requirements are approximately 12% higher for HMC-based diets than for DRC or SFC-based diets, which were similar.

Share

COinS