Department of Animal Science

 

Date of this Version

12-2013

Citation

Endocrinology. 2013 Dec; 154(12): pp. 4790–4802. doi: 10.1210/en.2013-1363

Comments

Copyright © 2013 by The Endocrine Society. Used by permission.

Abstract

Vascular endothelial growth factor A (VEGFA) isoform treatment has been demonstrated to alter spermatogonial stem cell homeostasis. Therefore, we generated pDmrt1-Cre;Vegfa−/− (knockout, KO) mice by crossing pDmrt1-Cre mice to floxed Vegfa mice to test whether loss of all VEGFA isoforms in Sertoli and germ cells would impair spermatogenesis. When first mated, KO males took 14 days longer to get control females pregnant (P < .02) and tended to take longer for all subsequent parturition intervals (9 days; P < .07). Heterozygous males sired fewer pups per litter (P < .03) and after the first litter took 10 days longer (P < .05) to impregnate females, suggesting a more progressive loss of fertility. Reproductive organs were collected from 6-month-old male mice. There were fewer sperm per tubule in the corpus epididymides (P < .001) and fewer ZBTB16-stained undifferentiated spermatogonia (P < .003) in the testes of KO males. Testicular mRNA abundance for Bcl2 (P < .02), Bcl2:Bax (P < .02), Neurog3 (P < .007), and Ret was greater (P = .0005), tended to be greater for Sin3a and tended to be reduced for total Foxo1 (P < .07) in KO males. Immunofluorescence for CD31 and VE-Cadherin showed no differences in testis vasculature; however, CD31-positive staining was evident in undifferentiated spermatogonia only in KO testes. Therefore, loss of VEGFA isoforms in Sertoli and germ cells alters genes necessary for long-term maintenance of undifferentiated spermatogonia, ultimately reducing sperm numbers and resulting in subfertility.

Share

COinS