Biochemistry, Department of


Date of this Version



Published in Journal of Cell Science 114, 3035-3045 (2001). Copyright © 2001 The Company of Biologists Ltd. Used by permission.


Screening of a cDNA library revealed the existence of a Dictyostelium cDNA encoding a protein 80% identical at the amino acid level to mammalian Rab11. Subcellular fractionation and immunofluorescence studies revealed that DdRab11 was exclusively associated with the ATPase proton pump-rich contractile vacuole membrane system, consisting of a reticular network and bladder-like vacuoles. Video microscopy of cells expressing GFP-DdRab11 revealed that this Rab was associated with contractile vacuolar bladders undergoing formation, fusion and expulsion of water. The association of DdRab11 with contractile vacuole membranes was disrupted when cells were exposed to either hypo-osmotic conditions or an inhibitor of the ATPase proton pump. Cells that overexpressed a dominant negative form of DdRab11 were analyzed biochemically and microscopically to measure changes in the structure and function of the contractile vacuole system. Compared with wild-type cells, the dominant negative DdRab11-expressing cells contained a more extensive contractile vacuole network and abnormally enlarged contractile vacuole bladders, most likely the result of defects in membrane trafficking. In addition, the mutant cells enlarged, detached from surfaces and contained large vacuoles when exposed to water, suggesting a functional defect in osmotic regulation. No changes were observed in mutant cells in the rate of fluid phase internalization or release, suggesting the DdRab11-mediated membrane trafficking defects were not general in nature. Surprisingly, the rate of phagocytosis was increased in the dominant negative DdRab11-expressing cells when compared with control cells. Our results are consistent with a role for DdRab11 in regulating membrane traffic to maintain the normal morphology and function of the contractile vacuole.