Food Science and Technology Department

 

Date of this Version

April 2003

Comments

Published in APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 2003, p. 2217–2222 Vol. 69, No. 4, 2003. Copyright © 2003, American Society for Microbiology. Used by permission.

Abstract

Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [3H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) α-1,2 linked to two, three, or four fructose (F) units (GF2, GF3, and GF4, respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF2 and GF3 was rapid, whereas little GF4 uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates.

Included in

Food Science Commons

Share

COinS