Food Science and Technology Department

 

Date of this Version

5-1984

Comments

Published in APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1984, p. 915-918 Vol. 47, No. 5. 0099-2240/84/050915-04$02.00/0 Copyright © 1984, American Society for Microbiology. Used by permission.

Abstract

Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stress were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process, as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. This timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods.

Included in

Food Science Commons

Share

COinS