"Algebraic Isomorphisms and Spectra of Triangular Limit Algebras" by Allan P. Donsig, David R. Pitts et al.

Mathematics, Department of

 

Document Type

Article

Date of this Version

2001

Citation

Indiana University Mathematics Journal c , Vol. 50, No. 3 (2001)

Comments

2001 MATHEMATICS SUBJECT CLASSIFICATION: Primary: 47L40; secondary: 47L50.

Abstract

We show that the spectrum of a triangular regular limit algebra (TAF algebra) is an invariant for algebraic isomorphism. Combining this with previous results provides a striking rigidity property: two triangular regular limit algebras are algebraically isomorphic if and only if they are isometrically isomorphic. A consequence of spectral invariance is a structure theorem for isomorphisms between limit algebras.

The proof of the main theorem makes use of a characterization of the completely meet irreducible ideals of a TAF algebra and a dual space formulation of the spectrum.

Share

COinS