Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

7-26-2006

Comments

Published by Am Inst of Physics. J. Appl. Phys. 100, 024110 (2006). Copyright 2006. Permission to use. http://www.aip.org/.

Abstract

We report the electrical characteristics of metal-ferroelectric-insulator-semiconductor structures, where the ferroelectric layer is a Langmuir-Blodgett film of a copolymer of 70% vinylidene fluoride and 30% trifluoroethylene. The 36-nm thick copolymer films were deposited on thermally oxidized (10 nm SiO2) p-type silicon and covered with a gold gate electrode. Polarization-field hysteresis loops indicate polarization switching in the polymer film. The device capacitance shows hysteresis when cycling the applied voltage between ±3 V, exhibiting a zero-bias on/off capacitance ratio of over 3:1 and a symmetric memory window 1 V wide, with little evidence of bias that can arise from traps in the oxide. Model calculations are in good agreement with the data and show that film polarization was not saturated. The capacitance hysteresis vanishes above the ferroelectric- paraelectric transition temperature, showing that it is due to polarization hysteresis. The retention time of both the on and off states was approximately 15 min at room temperature, possibly limited by leakage or by polarization instability in the unsaturated film. These devices provide a basis for nonvolatile data storage devices with fast nondestructive readout.

Included in

Physics Commons

Share

COinS