U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2008

Comments

Published in Transactions of the ASABE Vol. 51(5): 1633-1643.

Abstract

In semi‐arid areas such as western Nebraska, interest in subsurface drip irrigation (SDI) for corn is increasing due to restricted irrigation allocations. However, crop response quantification to nitrogen (N) applications with SDI and the environmental benefits of multiple in‐season (IS) SDI N applications instead of a single early‐season (ES) surface application are lacking. The study was conducted in 2004, 2005, and 2006 at the University of Nebraska‐Lincoln West Central Research and Extension Center in North Platte, Nebraska, comparing two N application methods (IS and ES) and three N rates (128, 186, and 278 kg N ha-1) using a randomized complete block design with four replications. No grain yield or biomass response was observed in 2004. In 2005 and 2006, corn grain yield and biomass production increased with increasing N rates, and the IS treatment increased grain yield, total N uptake, and gross return after N application costs (GRN) compared to the ES treatment. Chlorophyll meter readings taken at the R3 corn growth stage in 2006 showed that less N was supplied to the plant with ES compared to the IS treatment. At the end of the study, soil NO3-N masses in the 0.9 to 1.8 m depth were greater under the IS treatment compared to the ES treatment. Results suggested that greater losses of NO3-N below the root zone under the ES treatment may have had a negative effect on corn production. Under SDI systems, fertigating a recommended N rate at various corn growth stages can increase yields, GRN, and reduce NO3-N leaching in soils compared to concentrated early‐season applications.

Share

COinS