U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

 

Date of this Version

2006

Comments

Published in the Journal of Hydrologic Engineering, Vol. 11, No. 6, November 1, 2006.

Abstract

Erosion by lateral, subsurface flow is known to erode streambank sediment in numerous geographical locations; however, the role of seepage erosion on mass failure of streambanks is not well understood. In the absence of an established sediment transport model for seepage erosion, the objectives of this research were to investigate the mechanisms of erosion due to concentrated, lateral subsurface flow and develop an empirical sediment transport model for seepage erosion of noncohesive sediment on near-vertical streambanks. Laboratory experiments were performed using a two-dimensional soil lysimeter of a reconstructed streambank profile packed with three different soil layers to mimic seepage erosion occurring at Little Topashaw Creek (LTC) in northern Mississippi. Soil samples from LTC streambanks indicated considerable hydraulic conductivity contrast between an overlying silt loam layer (SiL), highly permeable loamy sand, and confining clay loam layer. Lysimeter experiments were conducted with various upstream water table heads, overburden heights, and lysimeter slopes. Bank failure occurred prior to the total release of negative pore-water pressures in the SiL layer suggesting that such a mechanism was not critical for bank collapse due to seepage erosion. A seepage erosion transport model for conductive, noncohesive soil layers was derived based on a dimensionless sediment discharge and dimensionless seepage flow shear stress. The advantage of this sediment transport model is that it relates sediment flux to seepage discharge from the streambank.

Share

COinS